
MA/CSC 416, Midterm exam, Comments and some solutions.

Short Answer Section

I am adding a few explanations, although you were not required to explain.

Question. How many nonnegative integer solutions are there to the inequality below? (Notice that
there are two “≤” signs.)

4 ≤ x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 6

Answer:
(
10
4

)
+
(
11
5

)
+
(
12
6

)
.

The set of solutions breaks up into three pieces: solutions to x1 + x2 + x3 + x4 + x5 + x6 + x7 = 4,
solutions to x1+x2+x3+x4+x5+x6+x7 = 5, and solutions to x1+x2+x3+x4+x5+x6+x7 = 6.
People had more trouble with this than I expected, and I realize that this was calling on you to
remember a formula, possibly without good reasons to remember it. So, when I graded this, I gave
at least 4 points for showing an attempt to use the Second Counting Principle to count the = 4,
= 5, and = 6 cases and then add.

Another answer:
(
13
7

)
−

(
10
7

)
. This counts solutions of x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 6 and

subtracts off the number of those solutions that satisfy x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 3.

Question. Consider the number 510510 with prime factorization 2 · 3 · 5 · 7 · 11 · 13 · 17. What is
the sum of the positive-integer divisors of 510510?

Answer: 3 · 4 · 6 · 8 · 12 · 14 · 18.
This is a special case of what you proved in Section 1.7, Problem 19.

Question. Draw the Ferrers diagrams of all partitions of 5.

Answer:

Question. List all set partitions of [5] with exactly 4 blocks.
The point here was to choose 2 elements to be together in one block. The other elements are in
singleton blocks.

Answer:
12|3|4|5 13|2|4|5 14|2|3|5 15|2|3|4
1|23|4|5 1|24|3|5 1|25|3|4
1|2|34|5 1|2|35|4
1|2|3|45

Question. Write down all of the one-to-one functions in F3,3 as ordered 3-tuples (i.e. ordered
triples). Then circle all of the functions that are also onto.

Answer: Here are all the one-to-one functions, and you should have circled all of them, because a
function from a set to itself is one-to-one if and only if it is onto. (Or, in this small example, you
could just verify that they are all onto.)

(1, 2, 3) (1, 3, 2)
(2, 1, 3) (2, 3, 1)
(3, 1, 2) (3, 2, 1)
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Problems requiring short explanations

For each problem, I am giving a sample answer showing the kind of explanation that was necessary.
Then I add some comments in italics. The italicized comments are not part of the suggested answer.

Question. Let r and n be positive integers. Write an expression for the number of pairs (A,B)
such that A is a subset of [n] with |A| = r, and B is a subset of A with no restriction on the size of B.

Answer: Use the Fundamental Counting Principle. There are
(
n
r

)
ways to choose A and 2r ways

to choose B. So the expression is
(
n
r

)
2r. This was similar to the left sides of the identities in

Homework 2, Section 1.2, Problem 10.

Question. How many 15-letter words are there that have a total of 4 A’s, 5 B’s, 3 C’s and 3 D’s
and end in A.

Answer: Since the last letter has to be A, we can make one of these words by first making a word
with 3 A’s, 5 B’s, 3 C’s and 3 D’s, then putting an A at the end. There are

(
14

3,5,3,3

)
ways to do that.

This recalls the reasoning involved in Homework 2, Section 1.2, Problem 9b.

Question. Prove that 5n =
n∑

i=0

(
n

i

)
4i.

Answer: The Binomial Theorem says (x + y)n =

n∑
i=0

(
n

i

)
xiyn−i. Substitute x = 4 and y = 1

and you get 5n =

n∑
i=0

(
n

i

)
4i. This builds on the idea learned in Homework 4, Section 1.7, Prob-

lem 6 and stressed in class: The idea of specializing a polynomial identity to get a numerical identity.

Alternative answer: LHS counts Fn,5. RHS counts the same thing in a different way. Given a
function f ∈ Fn,5, some number of elements of [n] map into the subset [4] of the range [5]. Let i
be that number, and use second counting principle to count Fn,5 according to what i is. For each
i, we need to choose an i-element subset S of [n], make a function from S to [4], and then extend
this to a function f : [n] → [5] by sending every element of [n] \ S to 5. Thus the Fundamental
Counting Principle says that there are

(
n
i

)
·4i ·1 functions for each i, so the total number of functions

is
∑n

i=0

(
n
i

)
4i.

This alternative answer was longer and not what I had in mind, but a few of you did it this way,
and it’s kinda fun. Do you see how, expanding on this argument, you could get a different proof of
the binomial theorem that applies whenever x and y are nonnegative integers?

Question. Write (and explain) the identity for S(m,n) that comes from considering whether a
given set partition has a block {m} or not.

Answer: S(m,n) = S(m− 1, n− 1) + nS(m− 1, n)
RHS counts partitions of [m] with n blocks using the second counting principle. Partitions with a
block {m} correspond to partitions of [m − 1] with n − 1 blocks. (The bijection is to take out the
block {m}, and the inverse bijection is to put in the block {m}.) Partitions without a block {m}
have the element m in some other block. To count these by the Fundamental Counting Principle,
first make a partition of [m− 1] with n blocks (S(m,n) ways) and then choose which block to put
m into (n ways).
This kind of two-part 2CP argument was a theme that was emphasized in class.

Question. Given nonnegative integers n and k, how many compositions of n have k parts and have
the property that every part is ≥ 2?

Answer: The set of compositions of n that have k parts and have the property that every part is ≥ 2
is in bijection with the set of compositions of n− k with k-parts. There are

(
n−k−1
k−1

)
of these. The

bijection is to subtract 1 from each part, and the inverse is to add 1 to each part. This ties in to
the “subtract one from each part” idea that was prevalent in a recent homework assignment about
partitions.



3

Challenge Problems

These ranged from “hard” to “almost impossibly hard.” I hope you followed my advice not to spend
time on these unless you were completely done working on (and checking) the other problems.

Question. Suppose k ≥ 0. Find limn→∞ pn−k(n).

Answer: This builds on what you did in Homework 6, Section 1.8., Problem 2 (and related to
Problem 13). The Ferrers diagram of a partition of n with n− k parts is a column with n− k boxes
and the remaining boxes arranged in a Ferrers shape to the right of that column. When n is much
larger than k (as it will be as it goes to ∞), any Ferrers shape can be made with those k boxes. So
the limit is p(k), the number of partitions of k.

Question. Prove: For an integer n > 1, any positive integers a1, . . . , an, and any prime number p,

the quantity
( n∑
i=1

ai
)p − n∑

j=1

(aj)
p
is a positive integer divisible by p.

Answer: This can be proved by altering the proof of Fermat’s Little Theorem in Homework 4,

Section 1.7, Problem 11. The point is that you use the Multinomial Theorem to expand
( n∑
i=1

ai
)p
.

By Problem 11a, almost every term in the expansion is divisible by p. There are exactly n terms

that are not necessarily divisible by p, and they are

n∑
j=1

(aj)
p
.

Question. Below is a version of Chu’s Theorem, written so as to make this problem as easy as
possible. Prove it combinatorially by a counting argument which shows that the right side also
counts r-subsets of [n]. (

n

r

)
=

n∑
k=1

(
k − 1

r − 1

)
.

Answer: For each r-subset of [n], let k be the (numerically) largest element of the r-subset. The
right side counts r-subsets according to k. Do you see how? (Think: if I knew the largest element,
what would be left to do to make the subset?)

Question. Find the coefficient of qn in the expression below. (Hint: 1
1−x can be expanded as

1 + x+ x2 + x3 + · · · )
∞∏
i=1

1

1− qi

Comment: This was asking you to make, in the last minutes of the exam, a very large creative and
conceptual leap. Possibly the great mathematician who originally did this took more than one class
period and had more background information at the time. What can I say? I already said that some
of these were almost impossibly hard. This problem will be very important later in the course. I
hope you will keep thinking about it in your spare time.


