
MA/CSC 416
Homework 2, Comments and some solutions.

NOTE: If anything here is unclear, please ask me about it!

General comment # 1

You cannot “bluff” your way through a mathematical argument, and it is dishonest to try. If you
don’t understand what a certain fact is true, don’t make up something that sounds plausible. I’m
more likely to award partial credit when you say what you know and then acknowledge that you
don’t understand the rest.

General comment # 2

As I’ve discussed several times in class, there is a fundamental difficulty when you try to use
natural language (i.e. human language, e.g. English, Spanish, Chinese, as opposed to computer
language or formal logical languages) to describe a mathematical argument. Would you believe that
one of the most important skills for a mathematician is to wring every possible bit of clarity and
precision from human language?

It is very important to think carefully about the words and phrases you write. Do they really
mean what they need to mean, or did you just write some words that seemed OK? In many of your
papers, I underlined phrases that weren’t clear or that didn’t seem to say what you really meant.

Problem 9b

This argument is very similar to that argument for Pascal’s identity from class. (In fact, if you
put k = 2 in the proof below, you get our proof of Pascal’s identity.) Note that the reason that you
add when you count the words is that you break the set of words up into disjoint subsets. It’s not
correct to describe this as a “step-by-step process.”

Sample solution to Problem 9b. The left side counts words with n letters with k distinct letters
a1, . . . , ak appearing, with ai appearing ri times for each i ∈ [n]. We will count this set of words
another way: break the set of words up into k disjoint subsets, where the ith subset consists of those
words whose last letter is ai. By the second counting principle (2CP), we can count each subset and
add.

To count the ith subset, notice that making a word (with ai appearing ri times) with n letters
ending in ai is the same as making a work with n−1 letters (ai appearing ri−1 times, each other aj
appearing rj times) and then tacking on ai at the end. Thus the i

th subset has
(

n−1
r1,··· ,ri−1,ri−1,ri+1···rk

)
elements. Summing over all i we obtain the right side. □

Problem 10a

Sample solution to Problem 10a. By the FCP,
(
n
k

)(
k
r

)
counts pairs (S, T ) such that T ⊆ S ⊆ [n]

with |S| = k and |T | = r. The right side counts the same pairs by FCP another way: In Step 1, we
choose T to be any r-element subset of [n]. In Step 2, we choose k−r elements of the (n−r)-element
set [n] \ T to make up the remaining elements of S (besides those elements in T ). FCP says there
are

(
n
r

)(
n−r
k−r

)
ways to choose these pairs. Since we counted the same thing two different ways, we

conclude that
(
n
k

)(
k
r

)
=

(
n
r

)(
n−r
k−r

)
. □

Comment: If it’s unclear why the first sentence of that proof is true, here it is: Choosing a pair
(S, T ) is a two-step process. (Step 1: Choose S and Step 2: Choose T .) In Step 1, we choose a
k-element subset S of an n-element set [n], and there are

(
n
k

)
ways to do that. In Step 2, we choose

an r-element subset T of a k-element set S, and there are
(
k
r

)
ways to do that (no matter which

k-element set S we chose in the first step). FCP says that the number of ways to carry out this

process is
(
n
k

)(
k
r

)
. Moving forward, this kind of thing will be so routine that we won’t usually explain

it. So if you have questions, it would be good to get them answered now.
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Problem 10b

Sample solution to Problem 10b. The left side of Problem 10b is the same as in Problem 10a, so we
just need to show that the right side of 10b also counts the pairs (S, T ) from that problem. We
count the pairs yet a third way: In Step 1, we choose a (k− r)-elements subset X of [n] and we will
eventually have X = S \ T . In Step 2, we choose an r-element subset T of the (n− k + r)-element

set [n] \X. Now (T ∪X,T ) is the desired pair, and we conclude that
(
n
k

)(
k
r

)
=

(
n

k−r

)(
n−k+r

r

)
. □

Problem 10c

Sample solution 1 to Problem 10c. We first show that the right side counts pairs (S, T ) such that
T ⊆ S ⊆ [n] with |T | = r (and no condition on the size of S). This is FCP, with Step 1 to pick T
and Step 2 to pick some additional elements from [n] \T to be in S \T . (This is similar to the right
side of Problem 10a.)

Next we show that the left side counts the same set of pairs. We use the the 2CP to break the set
of pairs up according to the size of S, and we use j to stand for the size of S. If S has j elements, then
the number of pairs (just as in the left side of Problems 10a and 10b) is

(
n
j

)(
j
r

)
. By the 2CP, the total

number of pairs is the sum of these numbers over all possible j. Thus
∑n

j=0

(
n
j

)(
j
r

)
=

(
n
r

)
2n−r. □

Comment: The proof given here for 10c might be the “second generation” proof that one would
come up with. In the “first generation,” you might start with the right side counting pairs (S, T )
such that S is an r-element subset of [n] and T is any subset of [n] \ S. (This would be a different
set S and a different set T from what we used in the proof.) Do you see how this is easier? One
could do this with a formal bijective proof, but for this problem, it’s really easier to just count the
same thing two different ways as above. In other situations, the formal bijective proof is easier.

Here is one more proof that might be called “semi-combinatorial” because it uses several facts that
we proved combinatorially but also uses a little bit of algebraic manipulation. If pressed, I will admit
that this is not a “combinatorial proof,” but I did give credit for it.

Sample solution 2 to Problem 10c. Using Problem 10a (which we proved combinatorially), rewrite
the left side as

∑n
j=0

(
n
r

)(
n−r
j−r

)
. Now the factor

(
n
r

)
in the summand does not depend on j, so we

can factor it out, and the left side becomes
(
n
r

)∑n
j=0

(
n−r
j−r

)
. Each summand is zero unless j ≥ r, so

this is
(
n
r

)∑n
j=r

(
n−r
j−r

)
, and we can reindex this sum (with k = j− r) as

(
n
r

)∑n
k=0

(
n−r
k

)
. We proved

combinatorially that the sum (without the factor
(
n
r

)
outside) is 2n−r, so we can finally rewrite this

as
(
n
r

)
2n−r. □

Problem 17

We could construct such a set Z by a two-step process that satisfies the hypotheses of the Funda-
mental Counting Principle: Step 1 is to choose r elements from X and step 2 is to choose s elements
from Y . Thus the answer is

(
n
r

)(
m
s

)
.

Problem 26

Here are three sample solutions. The first is very similar to what I did in class. The second is
an algebraic proof. (However, it uses Pascal’s relation, which has a combinatorial proof that we did
in class. So perhaps we could think of Sample Solution 2 as “semi-combinatorial.”) The third is a
direct FCP argument which, if you think about it, is vaguely the same as the first, taking S = [n]
and x = 1. There is also a nice proof using the Binomial Theorem. (I accidentally did that in class
before this homework was due!)

Sample solution 1 to Problem 26. Choose some element x ∈ S and define a map η on subsets of S:

η(U) =

{
U ∪ {x} if x ̸∈ U
U \ {x} if x ∈ U

(The notation U \ {x} denotes the set obtained by deleting x from U .)
Notice that for any set U ⊆ S, η(η(U)) = U , because either x is inserted then removed, or x is

removed then inserted. Notice also that if U is even then η(U) is odd and vice-versa. This gives a
bijection between even and odd subsets. (Formally, the map is “η restricted to even subsets” and
the inverse map is “η restricted to odd subsets”.) □
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What does “restricted” mean? It means that you only allow certain elements to be input. The
point is that “η restricted to even subsets” is a map that takes an even subset and gives an odd
subset. Similarly, “η restricted to odd subsets” is a map that takes an odd subset and gives an even
subset. These two maps are inverses because η(η(U)) = U for any U .

Sample solution 2 to Problem 26. If n is odd then consider the sum(
n

n

)
+

(
n

n− 2

)
+ · · ·+

(
n

1

)
which counts odd subsets. Applying Pascal’s identity to each term, we obtain[(

n− 1

n

)
+

(
n− 1

n− 1

)]
+

[(
n− 1

n− 2

)
+

(
n− 1

n− 3

)]
+ · · ·+

[(
n− 1

1

)
+

(
n− 1

0

)]
Since

(
n−1
n

)
= 0, this is just the number of subsets of a set of size n − 1. Thus there are 2n−1 odd

subsets of S. Since there are 2n subsets of S total, there must also be 2n−1 even subsets of S.
If n is even then the proof is almost exactly the same. In this case, the even subsets are counted

by (
n

n

)
+

(
n

n− 2

)
+ · · ·+

(
n

0

)
.

Since
(
n
0

)
=

(
n−1
0

)
= 1, replace the last term by

(
n−1
0

)
and apply Pascals relation to every other

term as before to obtain

n−1∑
k=0

(
n− 1

k

)
, which equals 2n−1. Thus there are 2n−1 even subsets of S

and 2n−1 odd subsets of S. □

By the way, we could have argued a differently in the case where n is odd: If n is odd then the
even subsets are counted by (

n

0

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
.

Applying the relation
(
n
k

)
=

(
n

n−k

)
to each term, this sum can be rewritten(
n

n

)
+

(
n

n− 2

)
+ · · ·+

(
n

1

)
,

which counts the odd subsets.

Sample solution 3 to Problem 26. We know that there are 2n total subsets of [n]. We will use FCP
to show that there are 2n−1 odd subsets of [n]. We can make an odd subset S of [n], we have n
decisions to make: For each i from 1 to n, we must decide if i ∈ S. There are two choices for each
decision, except that when we get to n, we have only one choice, because only one choice will give
an odd subset. Thus there are 2n−1 odd subsets.

To show that there are also 2n−1 even subsets, we can make exactly the same argument that we
made for odd subsets, or we can just subtract 2n − 2n−1 to get 2n−1. □

Problem 28

Sample solution 1 to Problem 28. We first count ordered factorizations, i.e. count 2×3 and 3×2 as
different factorizations of 6. Requiring that the factors be relatively prime is equivalent to requiring
that no pi occurs in both factors. Now choosing an ordered factorization is equivalent to choosing a
subset I of [r] such that the left factor is

∏
i∈I p

ai
i . (The right factor is then

∏
i∈[r]\I p

ai
i .) There are

2r possible subsets, but the empty set and the full set must be thrown out, since they lead to one of
the factors being 1. This leaves 2r − 2 possible ordered factorizations. Each unordered factorization
corresponds to two ordered factorizations, so there are 2r−1 − 1 unordered factorizations. □

Sample solution 2 to Problem 28. Requiring that the factors be relatively prime is equivalent to
requiring that no pi occurs in both factors, so we just need to decide which factor to put each pai

i in.
In any factorization, one of the two factors has par

r in it. Since we only count factorizations in one of
the possible orders, we may as well take the second factor to have par

r in it. For each other pai
i , there

are two choices (first factor or second factor) of where to put it, giving 2r−1 possibilities. Every one
of these possibilities is a valid factorization, except when we put all of the pai

i in the second factor,
because then the first factor is 1. Subtracting off the only disallowed possibility, we see that there
are 2r−1 − 1 unordered factorizations. □


